a Ruby (on Rails)

Tutorial
Syntax

About the Section

* Introduce the Ruby programming language
* Use Ruby to template web pages
* Learn about Ruby on Rails and its benefits

puts vs. print

e "puts” adds a new line after it is done
— analogous System.out.printin()

e "print" does not add a new line

— analogous to System.out.print()

Running Ruby Programs

* Use the Ruby interpreter
ruby hello_world.rb
— “ruby” tells the computer to use the Ruby
interpreter

* |nteractive Ruby (irb) console
irb
— Get immediate feedback

— Test Ruby features

Comments

this is a single line comment

=begin

this is a multiline comment

nothing in here will be part of the code
=end

Variables

* Declaration — No need to declare a "type"
* Assignment —same as in Java

* Example:
x = "hello world" # String
y=3 # Fixnum
z=45 # Float

r=1..10 # Range

* Everything is an object.
— Common Types (Classes): Numbers, Strings, Ranges
— nil, Ruby's equivalent of null is also an object

* Uses "dot-notation” like Java objects
* You can find the class of any variable

x = "hello"
x.class - String
* You can find the methods of any variable or class
x = "hello"
X.methods

String.methods

Objects (cont.)

* There are many methods that all Objects have

* Include the "?" in the method names, it is a

Ruby naming convention for boolean methods
* nil?
* eql?/equal?

* instance_of?
* is_ a?’
*to s

Numbers

* Numbers are objects

e Different Classes of Numbers
— FixNum, Float

3.eql?2 - false
-42.abs - 42
3.4.round - 3
3.6.rount - 4
3.2.ceil - 4
3.8.floor - 3
3.zero? - false

String Methods

"hello world".length - 11

"hello world".nil? - false

" onil? - false

"ryan" > "kelly" - true
"hello_world!".instance_of?String —> true

"hello" * 3 - "hellohellohello"
"hello" + " world" - "hello world"

"hello world".index("w" > 6

10

Operators and Logic

Same as Java
— Multiplication, division, addition, subtraction, etc.
Also same as Java AND Python (WHA?!)

—"and" and "or" as well as "&&" and "| |"

Strange things happen with Strings
— String concatenation (+)
— String multiplication (*)

Case and Point: There are many ways to solve
a problem in Ruby

11

if/elsif/else/end

e Must use "elsif" instead of "else if"

* Notice use of "end". It replaces closing curly
braces in Java

* Example:
if (age < 35)
puts "young whipper-snapper"
elsif (age < 105)
puts "80 is the new 30!"
else
puts "wow... gratz..."
end

12

Inline "if" statements

e Original if-statement
if age <105
puts "don't worry, you are still young"
end

e |Inline if-statement

puts "don't worry, you are still young" if age < 105

13

for-loops

» for-loops can use ranges

* Example 1:
foriin1..10
puts i
end
e Can also use blocks (covered next week)
3.times do
puts "Ryan! "
end

14

for-loops and ranges

* You may need a more advanced range for your
for-loop

* Bounds of a range can be expressions

 Example:
foriin1..(2*5)
puts i
end

15

while-loops

* Can also use blocks (next week)
 Cannot use "i++"

* Example:
=0
whilei<5
puts i
i=i+1

end

16

unless

* "unless" is the logical opposite of "if"

* Example:
unless (age >= 105) # if (age < 105)
puts "young."
else
puts "old."
end

17

until

e Similarly, "until” is the logical opposite of
"while"

e Can specify a condition to have the loop stop
(instead of continuing)

 Example
i=0
until (i>=5) # while (i < 5), parenthesis not required
puts |
i=i+1

end

18

Methods

e Structure

def method _name(parameterl, parameter2, ...)
statements
end

* Simple Example:
def print_ryan
puts "Ryan"
end

19

Parameters

* No class/type required, just name them!

 Example:

def cumulative_sum(num1, num?2)
sum=0
foriin numl..num?2
sum =sum +i
end
return sum
end

call the method and print the result
puts(cumulative_sum(1,5))

20

* Ruby methods return the value of the last

statement in the method, so...

def add(num1, num?2)
sum =numl + num2

return sum
end

can become
def add(nhum1, num?2)
numl + num?2

end

21

User Input

e "gets" method obtains input from a user
 Example

name = gets

puts "hello " + name +

* Use chomp to get rid of the extra line

puts "hello" + name.chomp +

 chomp removes trailing new lines

22

Changing types

* You may want to treat a String a number or a
number as a String

* to_i—converts to an integer (FixNum)
e to_f—converts a String to a Float
* to_s—converts a number to a String

 Examples
"3.5"to_i > 3
"3.5"to_f > 3.5
3.to_s > "3"

23

Constants

* In Ruby, constants begin with an Uppercase
* They should be assigned a value at most once

* This is why local variables begin with a
lowercase

* Example:
Width =5
def square
puts ("*" * Width + "\n") * Width
end

24

* Similar to PHP, Ruby arrays...

— Are indexed by zero-based integer values

— Store an assortment of types within the same
array

— Are declared using square brackets, [], elements
are separated by commas

* Example:
a=[1, 4.3, "hello", 3..7]
a[0] ~—> 1

a[2] = "hello"

* You can assign values to an array at a
particular index, just like PHP

e Arrays increase in size if an index is specified
out of bounds and fill gaps with nil

 Example:
a=|[1,4.3, "hello", 3..7]
a[4] = "goodbye"
a - [1, 4.3, "hello", 3..7, "goodbye"]
a[6] = "hola"
a - [1, 4.3, "hello", 3..7, "goodbye", nil, "hola"]

Negative Integer Index

* Negative integer values can be used to index
values in an array

 Example:
a=[1, 4.3, "hello", 3..7]
a[-1] -2 3..7
a[-2] -2 "hello"
a[-3] = 83.6
a > [1, 83.6, "hello", 3..7]

* Arrays use integers as keys for a particular
values (zero-based indexing)

* Hashes, also known as "associative arrays”,
nave Objects as keys instead of integers

* Declared with curly braces, {}, and an arrow,
"=>" between the key and the value

* Example:
h = {"greeting" => "hello", "farewell" =>"goodbye"}
h["greeting"] > "hello"

Sorting

a=[5,6.7,1.2, 8]

a.sort - [1.2,5, 6.7, 8]

a - 5,6.7,1.2, 8]

a.sort! - 1.2, 5, 6.7, 8]

a - 1.2, 5, 6.7, 8]

al4] = "hello" > 1.2, 5,6.7, 8, "hello"]

a.sort —> Error: comparison of Float with
String failed

h = {"greeting" => "hello", "farewell" =>"goodbye"}
h.sort -2 [["farewell", "goodbye"], ["greeting", "hello"]]

Blocks

* Blocks are simply "blocks" of code

 They are defined by curly braces, {}, or a
do/end statement

* They are used to pass code to methods and
loops

Blocks

* In Java, we were only able to pass parameters
and call methods

* In Ruby, we can pass code through blocks

* We saw this last week, the times() method

takes a block:
3.times { puts "hello" } # the block is the code in the {}

Blocks and Parameters

* Blocks can also take parameters

* For example, our times() method can take a
block that takes a parameter. It will then pass
a parameter to are block

 Example

3.times {|n| puts "hello" + n.to_s}

* Here "n" is specified as a parameter to the
block through the vertical bars "|"

Yield

* vield statements go hand-in-hand with blocks

 The code of a block is executed when a yield
statement called

Yield

* Avyield statement can also be called with
parameters that are then passed to the block
* Example:
3.times { |n| puts n}

* The "times" method calls yield with a
parameter that we ignored when we just
printed "hello" 3 times, but shows up when
we accepted a parameter in our block

Yield Examples

Code: Output:
def demo_yield
puts "BEGINNING" BEGINNING
vield hello
enzuts END END

demo_yield { puts "hello" }

def demo_yield2

puts "BEGINNING" BEGINNING
yield hello
puts "MIDDLE" MIDDLE
yield hello
puts "END" END

end

demo_yield2{ puts "hello" }

Parameters, Blocks, and Yield

* Example:

def demo_yield3
yield 2
yield "hello"
yield 3.7
end
demo _vyield3 { |n| puts n * 3}

* "'n" is the value passed by yield to the block
when yield is called with arguments

Ilterators

* An iterator is simply "a method that invokes a
olock of code repeatedly” (Pragmatic
Programmers Guide)

* |terator examples: Array.find, Array.each,
Range.each

 Examples:
[1,2,3,4,5].find{ |[n| Math.sgrt(n).remainder(1)==0} # finds perfect square
[2,3,4,5].find{ |n| Math.sqrt(n).remainder(1)==0} # finds perfect square
[1,2,3,4,5].each { |i| putsi } #prints 1 through 5
[1,2,3,4,5].each { |i| putsi *i} #prints 1 squared, 2 squared..., 5squared
(1..5).each{ |i| putsi*i} #prints 1 squared, 2 squared..., 5squared

lterators and Loops

« Common to use iterators instead of loops
* Avoids off-by-one (OBO) bugs
e Built-in iterators have well defined behavior

 Examples
O.upto(5) { | x| puts x } # prints O through 5
O.step(10, 2) { |x| putsx} #0,2,4,6,8, 10

0.step(10,3) { | x| puts x } #0,3,6,9

for...in

e Similar to PHP's foreach:

— PHP
Sprices = array(9.00, 5.95, 12.50)
foreach(Sprices as Sprice){
print "The next item costs Sprice\n"

}
— Ruby
prices = [9.00, 5.95, 12.50]
for price in prices
puts "The next item costs " + price.to_s
end

for...in

* Previous example
prices = [9.00, 5.95, 12.50]
for price in prices
puts "The next item costs " + price.to_s
end

* Can also be written
prices = [9.00, 5.95, 12.50]
prices.each do | price]
puts "The next item costs " + price.to_s
end

» Strings can be referenced as Arrays

* The va
of the

* Examp

s = "hello"
1

(%)

»w u Om

N RPN

e.

.chr
.chr

N2 2 2 Z

Strings

ue returned is the a Integer equivalent
etter at the specified index

101
108

More Strings

 chomp —returns a new String with the trailing
newlines removed

e chomp! —same as chomp but modifies
original string

More Strings

e split(delimiter) — returns an array of the
substrings created by splitting the original
string at the delimiter

* slice(starting index, length) — returns a
substring of the original string beginning at
the "starting index" and continuing for
"length" characters

Strings Examples

s = "hello world\n"

s.chomp - "hello world"

S - "hello world\n"
s.chomp! - "hello world"

S - "hello world"

s.split(" ") - ["hello", "world"]
s.split("l") - ["he", "", "o wor", "d"]
s.slice(3,5) > "lo wo"

S - "hello world"
s.slice!(3,5) > "lo wo"

S - "helrld"

Iterating over String characters

Code Output

"hello".each {|n| puts n} "hello"

"hello".each_byte {|n| puts n} 104
101
108
108
111

"hello".each_byte {|n| puts n.chr}

o — — o =

Files as Input

* To read a file, call File.open(), passing it the
the path to your file

e Passing a block to File.open() yields control to
the block, passing it the opened file

* You can then call gets() on the file to get each
line of the file to process individually

— This is analogous to Java's Scanner's .nextLine()

Files as Input

 Example (bold denotes variable names)

File.open("file.txt") do |input| # inputis the file passed to our block
while line = input.gets # line is the String returned from gets()
process line as a String within the loop
tokens = line.split(" ")
end
end

Output to Files

e To output to a file, call File.open with an
additional parameter, "w", denoting that you
want to write to the file

File.open("file.txt", "w") do |output|
output.puts "we are printing to a file!"
end

Writing from one file to another

 |f a block is passed, File.open yields control to
the block, passing it the file.

* To write from one file to another, you can nest
File.open calls within the blocks

Writing from one file to another

File.open("input_file.txt") do |input]
File.open("output_file.txt", "w") do |output|
while line = input.gets
output.puts line
end
end

end

References

* Web Sites
— http://www.ruby-lang.org/en/

— http://rubyonrails.org/

e Books

— Programming Ruby: The Pragmatic Programmers'
Guide (http://www.rubycentral.com/book/)

— Agile Web Development with Rails
— Rails Recipes
— Advanced Rails Recipes

51

