
Ruby (on Rails)

Tutorial
Syntax

1

About the Section

• Introduce the Ruby programming language
• Use Ruby to template web pages
• Learn about Ruby on Rails and its benefits

2

puts vs. print

• "puts" adds a new line after it is done
– analogous System.out.println()

• "print" does not add a new line
– analogous to System.out.print()

3

Running Ruby Programs

• Use the Ruby interpreter
ruby hello_world.rb

– “ruby” tells the computer to use the Ruby
interpreter

• Interactive Ruby (irb) console
irb

– Get immediate feedback
– Test Ruby features

4

Comments
this is a single line comment

=begin
this is a multiline comment
nothing in here will be part of the code

=end

5

Variables

• Declaration – No need to declare a "type"
• Assignment – same as in Java
• Example:

x = "hello world" # String
y = 3 # Fixnum
z = 4.5 # Float
r = 1..10 # Range

6

Objects
• Everything is an object.
– Common Types (Classes): Numbers, Strings, Ranges
– nil, Ruby's equivalent of null is also an object

• Uses "dot-notation" like Java objects
• You can find the class of any variable

x = "hello"
x.class à String

• You can find the methods of any variable or class
x = "hello"
x.methods
String.methods

7

Objects (cont.)

• There are many methods that all Objects have
• Include the "?" in the method names, it is a

Ruby naming convention for boolean methods
• nil?
• eql?/equal?
• ==, !=, ===
• instance_of?
• is_a?
• to_s

8

Numbers

• Numbers are objects
• Different Classes of Numbers
– FixNum, Float

3.eql?2 à false
-42.abs à 42
3.4.round à 3
3.6.rount à 4
3.2.ceil à 4
3.8.floor à 3
3.zero? à false

9

String Methods
"hello world".length à 11

"hello world".nil? à false

"".nil? à false

"ryan" > "kelly" à true

"hello_world!".instance_of?String à true

"hello" * 3 à "hellohellohello"

"hello" + " world" à "hello world"

"hello world".index("w") à 6
10

Operators and Logic

• Same as Java
– Multiplication, division, addition, subtraction, etc.

• Also same as Java AND Python (WHA?!)
– "and" and "or" as well as "&&" and "||"

• Strange things happen with Strings
– String concatenation (+)
– String multiplication (*)

• Case and Point: There are many ways to solve
a problem in Ruby

11

if/elsif/else/end

• Must use "elsif" instead of "else if"
• Notice use of "end". It replaces closing curly

braces in Java
• Example:

if (age < 35)
puts "young whipper-snapper"

elsif (age < 105)
puts "80 is the new 30!"

else
puts "wow… gratz..."

end
12

Inline "if" statements

• Original if-statement
if age < 105

puts "don't worry, you are still young"
end

• Inline if-statement
puts "don't worry, you are still young" if age < 105

13

for-loops

• for-loops can use ranges
• Example 1:

for i in 1..10
puts i

end

• Can also use blocks (covered next week)
3.times do

puts "Ryan! "
end

14

for-loops and ranges

• You may need a more advanced range for your
for-loop

• Bounds of a range can be expressions
• Example:

for i in 1..(2*5)
puts i

end

15

while-loops

• Can also use blocks (next week)
• Cannot use "i++"
• Example:

i = 0
while i < 5

puts i
i = i + 1

end

16

unless

• "unless" is the logical opposite of "if"

• Example:
unless (age >= 105) # if (age < 105)

puts "young."
else

puts "old."
end

17

until

• Similarly, "until" is the logical opposite of
"while"

• Can specify a condition to have the loop stop
(instead of continuing)

• Example
i = 0
until (i >= 5) # while (i < 5), parenthesis not required

puts I
i = i + 1

end
18

Methods

• Structure
def method_name(parameter1, parameter2, …)

statements
end

• Simple Example:
def print_ryan

puts "Ryan"
end

19

Parameters
• No class/type required, just name them!
• Example:

def cumulative_sum(num1, num2)
sum = 0
for i in num1..num2

sum = sum + i
end
return sum

end

call the method and print the result
puts(cumulative_sum(1,5))

20

Return

• Ruby methods return the value of the last
statement in the method, so…

def add(num1, num2)
sum = num1 + num2
return sum

end

can become
def add(num1, num2)

num1 + num2
end

21

User Input

• "gets" method obtains input from a user
• Example

name = gets
puts "hello " + name + "!"

• Use chomp to get rid of the extra line
puts "hello" + name.chomp + "!"

• chomp removes trailing new lines

22

Changing types

• You may want to treat a String a number or a
number as a String

• to_i – converts to an integer (FixNum)
• to_f – converts a String to a Float
• to_s – converts a number to a String

• Examples
"3.5".to_i à 3
"3.5".to_f à 3.5
3.to_s à "3"

23

Constants

• In Ruby, constants begin with an Uppercase
• They should be assigned a value at most once
• This is why local variables begin with a

lowercase
• Example:

Width = 5
def square

puts ("*" * Width + "\n") * Width
end

24

Arrays

• Similar to PHP, Ruby arrays…
– Are indexed by zero-based integer values
– Store an assortment of types within the same

array
– Are declared using square brackets, [], elements

are separated by commas
• Example:

a = [1, 4.3, "hello", 3..7]
a[0] à 1
a[2] à "hello"

Arrays

• You can assign values to an array at a
particular index, just like PHP

• Arrays increase in size if an index is specified
out of bounds and fill gaps with nil

• Example:
a = [1, 4.3, "hello", 3..7]
a[4] = "goodbye"
a à [1, 4.3, "hello", 3..7, "goodbye"]
a[6] = "hola"
a à [1, 4.3, "hello", 3..7, "goodbye", nil, "hola"]

Negative Integer Index

• Negative integer values can be used to index
values in an array

• Example:
a = [1, 4.3, "hello", 3..7]
a[-1] à 3..7
a[-2] à "hello"
a[-3] = 83.6
a à [1, 83.6, "hello", 3..7]

Hashes

• Arrays use integers as keys for a particular
values (zero-based indexing)

• Hashes, also known as "associative arrays",
have Objects as keys instead of integers

• Declared with curly braces, {}, and an arrow,
"=>", between the key and the value

• Example:
h = {"greeting" => "hello", "farewell" =>"goodbye"}
h["greeting"] à "hello"

Sorting
a = [5, 6.7, 1.2, 8]
a.sort à [1.2, 5, 6.7, 8]
a à [5, 6.7, 1.2, 8]
a.sort! à [1.2, 5, 6.7, 8]
a à [1.2, 5, 6.7, 8]
a[4] = "hello" à [1.2, 5, 6.7, 8, "hello"]
a.sort à Error: comparison of Float with

String failed
h = {"greeting" => "hello", "farewell" =>"goodbye"}
h.sort à [["farewell", "goodbye"], ["greeting", "hello"]]

Blocks

• Blocks are simply "blocks" of code

• They are defined by curly braces, {}, or a
do/end statement

• They are used to pass code to methods and
loops

Blocks

• In Java, we were only able to pass parameters
and call methods

• In Ruby, we can pass code through blocks
• We saw this last week, the times() method

takes a block:
3.times { puts "hello" } # the block is the code in the {}

Blocks and Parameters

• Blocks can also take parameters
• For example, our times() method can take a

block that takes a parameter. It will then pass
a parameter to are block

• Example
3.times {|n| puts "hello" + n.to_s}

• Here "n" is specified as a parameter to the
block through the vertical bars "|"

Yield

• yield statements go hand-in-hand with blocks
• The code of a block is executed when a yield

statement called

Yield

• A yield statement can also be called with
parameters that are then passed to the block

• Example:
3.times { |n| puts n}

• The "times" method calls yield with a
parameter that we ignored when we just
printed "hello" 3 times, but shows up when
we accepted a parameter in our block

Yield Examples
Code:

def demo_yield
puts "BEGINNING"
yield
puts "END"

end
demo_yield { puts "hello" }

def demo_yield2
puts "BEGINNING"
yield
puts "MIDDLE"
yield
puts "END"

end
demo_yield2{ puts "hello" }

Output:

BEGINNING
hello
END

BEGINNING
hello
MIDDLE
hello
END

Parameters, Blocks, and Yield

• Example:
def demo_yield3

yield 2
yield "hello"
yield 3.7

end
demo_yield3 { |n| puts n * 3}

• "n" is the value passed by yield to the block
when yield is called with arguments

Iterators

• An iterator is simply "a method that invokes a
block of code repeatedly" (Pragmatic
Programmers Guide)

• Iterator examples: Array.find, Array.each,
Range.each

• Examples:
[1,2,3,4,5].find{ |n| Math.sqrt(n).remainder(1)==0} # finds perfect square
[2,3,4,5].find{ |n| Math.sqrt(n).remainder(1)==0} # finds perfect square
[1,2,3,4,5].each { |i| puts i } #prints 1 through 5
[1,2,3,4,5].each { |i| puts i * i } #prints 1 squared, 2 squared…, 5squared
(1..5).each{ |i| puts i*i } #prints 1 squared, 2 squared…, 5squared

Iterators and Loops

• Common to use iterators instead of loops
• Avoids off-by-one (OBO) bugs
• Built-in iterators have well defined behavior
• Examples

0.upto(5) { |x| puts x } # prints 0 through 5
0.step(10, 2) { |x| puts x } # 0, 2, 4, 6, 8, 10
0.step(10,3) { |x| puts x } # 0, 3, 6, 9

for…in

• Similar to PHP's foreach:
– PHP

$prices = array(9.00, 5.95, 12.50)
foreach($prices as $price){

print "The next item costs $price\n"
}

– Ruby
prices = [9.00, 5.95, 12.50]
for price in prices

puts "The next item costs " + price.to_s
end

for...in

• Previous example
prices = [9.00, 5.95, 12.50]
for price in prices

puts "The next item costs " + price.to_s
end

• Can also be written
prices = [9.00, 5.95, 12.50]
prices.each do |price|

puts "The next item costs " + price.to_s
end

Strings

• Strings can be referenced as Arrays
• The value returned is the a Integer equivalent

of the letter at the specified index
• Example:

s = "hello"
s[1] à 101
s[2] à 108
s[1].chr à "e"
s[2].chr à "l"

More Strings

• chomp – returns a new String with the trailing
newlines removed

• chomp! – same as chomp but modifies
original string

More Strings

• split(delimiter) – returns an array of the
substrings created by splitting the original
string at the delimiter

• slice(starting index, length) – returns a
substring of the original string beginning at
the "starting index" and continuing for
"length" characters

Strings Examples
s = "hello world\n"
s.chomp à "hello world"
s à "hello world\n"
s.chomp! à "hello world"
s à "hello world"
s.split(" ") à ["hello", "world"]
s.split("l") à ["he", "", "o wor", "d"]
s.slice(3,5) à "lo wo"
s à "hello world"
s.slice!(3,5) à "lo wo"
s à "helrld"

Iterating over String characters
Code
"hello".each {|n| puts n}

"hello".each_byte {|n| puts n}

"hello".each_byte {|n| puts n.chr}

Output
"hello"

104
101
108
108
111

h
e
l
l
o

Files as Input

• To read a file, call File.open(), passing it the
the path to your file

• Passing a block to File.open() yields control to
the block, passing it the opened file

• You can then call gets() on the file to get each
line of the file to process individually
– This is analogous to Java's Scanner's .nextLine()

Files as Input

• Example (bold denotes variable names)
File.open("file.txt") do |input| # input is the file passed to our block

while line = input.gets # line is the String returned from gets()
process line as a String within the loop
tokens = line.split(" ")

end
end

Output to Files

• To output to a file, call File.open with an
additional parameter, "w", denoting that you
want to write to the file

File.open("file.txt", "w") do |output|
output.puts "we are printing to a file!"

end

Writing from one file to another

• If a block is passed, File.open yields control to
the block, passing it the file.

• To write from one file to another, you can nest
File.open calls within the blocks

Writing from one file to another

File.open("input_file.txt") do |input|
File.open("output_file.txt", "w") do |output|

while line = input.gets
output.puts line

end
end

end

References

• Web Sites
– http://www.ruby-lang.org/en/
– http://rubyonrails.org/

• Books
– Programming Ruby: The Pragmatic Programmers'

Guide (http://www.rubycentral.com/book/)
– Agile Web Development with Rails
– Rails Recipes
– Advanced Rails Recipes

51

